JENNY S C I E N C E * movirg preiesell, within tight space

Data Sheet LINAX ${ }^{\circledR}$

Edition 20 February 2024
LINAX ${ }^{\circledR}$ Linear Motor Axes
4 Types

$\mathbf{L x} \mathbf{c}, \mathrm{c}=$ compact
$\mathbf{L x u}, \mathrm{u}=$ universal
$\mathbf{L x s}, \mathrm{s}=$ shuttle
Lxe, e e exclusive

Highlights

Compact dimensions, high precision
Positioning accuracy optical +/- $2 \mu \mathrm{~m}$, resolution $1 \mu \mathrm{~m}$ or $+/-500 \mathrm{~nm}$, resolution 100 nm

Positioning accuracy magnetic $+/-5 \mu \mathrm{~m}$, resolution $1 \mu \mathrm{~m}$ (for Lxu and Lxs only)

Modular system with strokes from $44-1600 \mathrm{~mm}$

Peak forces from 24N - 300N
High cycle rates with velocities up to $4 \mathrm{~m} / \mathrm{s}$ due to the linear motor

FORCETEQ ${ }^{\circledR}$ basic/pro force control, force limitation, force monitoring with XENAX ${ }^{\circledR}$ Xvi servo controller

Overview

The construction of the very compact LINAX ${ }^{\circledR}$ Lxc (compact) types is based on the patented mono-bloc design. The linear motor coils are located in the mono-bloc and the magnets and the glass scale are on the slider. The magnets are moving while the coils remain stationary. No moving cables and cable chains result which translates into longer life span.

The Lxu (universal) types are real „allrounders". There are three mounting possibilities: mounting to the slider, to the ground plate or to the front face. Also interesting are the four long holes through the carriage slider. This allows for the direct back to back mounting of two Lxu sliders.

The two Lxs (shuttle) F60 and F120 models are designed for long travel distances up to

1600 mm as the main axis. The low-profile design with an "embedded" linear motor is advantageous. As a result, the height is reduced to only 38 mm for the Lxs F 60 and only 45 mm for the Lxs F120. The robust, widely spaced guides can accommodate high torque from cantilever axes.

LINAX ${ }^{\circledR}$ Lxs 800F60, with multiple carriage slider for highly integrated machine concepts

The LINAX ${ }^{\circledR}$ Lxe (exclusive) models have a protective cover that is passed through the carriage slider of the linear motor. The result is a flat and elegant geometry for easy cleaning. This Lxe series is predestined for medical and clean room applications.

LINAX ${ }^{\circledR}$ Lxe 550F40, with protective cover

By using Jenny Science drive components, you can build your machines and devices more compactly and efficiently, while the FORCETEQ ${ }^{\circledR}$ force measurement technology ensures integrated quality control.

The result shows: Reduced space requirements, increased productivity, controlled quality, and decreased energy
costs.

Content

1 Code for LINAX ${ }^{\circledR}$ Types 7
2 LINAX ${ }^{\circledR}$ Lxc F08/F10/F40 7
2.1 External Dimensions LINAX ${ }^{\circledR}$ Lxc 7
2.2 Dynamics LINAX ${ }^{\circledR}$ Lxc 8
2.2.1 Power Supply, Speed Lxc 8
2.3 Precision LINAX ${ }^{\circledR}$ Lxc 9
2.3.1 Positioning Lxc 9
2.3.2 Guidings of Slider Lxc 10
2.3.3 Typical measurement results LINAX ${ }^{\circledR}$ Lxc 230F10 of series production 11
2.4 Load parameters of Guides Lxc 12
2.5 Dimensions Lxc F08/10 13
2.5.4 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 44F08 13
2.5.5 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 85F10 14
2.5.6 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 135 F10 15
2.5.7 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 230F10 16
2.6 Dimensions Lxc F40 17
2.6.1 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 80F40 17
2.6.2 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 176 F40 18
2.6.3 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 272F40 19
3 LINAX ${ }^{\circledR}$ Lxu F60 20
3.1 External Dimensions LINAX ${ }^{\circledR}$ Lxu F60 20
3.2 Dynamics LINAX ${ }^{\circledR}$ Lxu 21
3.2.1 Slider in Motion 21
3.2.2 Ground Plate in Motion 21
3.2.3 Power Supply, Speed Lxu 21
3.3 Precision LINAX ${ }^{\circledR}$ Lxu 22
3.3.1 Positioning Lxu 22
3.3.2 Guidings of Slider Lxu 23
3.3.3 Typical measurement results LINAX ${ }^{\circledR}$ Lxu 320F60 of series production 24
3.4 Stress Values of Guides Lxu 24
3.5 Installation Dimensions LINAX ${ }^{\circledR}$ Lxu 40 - Lxu 320 25
4 LINAX ${ }^{\circledR}$ Lxs F60 27
4.1 External Dimensions Lxs F60 27
4.2 Dynamics LINAX ${ }^{\circledR}$ Lxs F60 28
4.2.1 Power Supply, Speed Lxs F60 28
4.3 Precision LINAX ${ }^{\circledR}$ Lxs 29
4.3.1 Positioning Lxs 29
4.3.2 Guidings of Slider Lxs F60 30
4.3.3 Typical measurement results LINAX ${ }^{\circledR}$ Lxs 600F60 of series production 31
4.4 Load parameters of Guides Lxs 31
4.5 Installation Dimensions LINAX ${ }^{\circledR}$ Lxs 160 - Lxs 1600 32
5 LINAX ${ }^{\circledR}$ Lxs F120 35
5.1 External Dimensions Lxs F120 35
5.2 Dynamics LINAX ${ }^{\circledR}$ Lxs F120 36
5.2.1 Power supply voltage versus speed Lxs F120 36
5.3 Precision LINAX ${ }^{\circledR}$ Lxs F120 37
5.3.2 Absolute positioning Lxs F120 37
5.3.3 Carriage guide Lxs F120 38
5.3.4 Typical measurement results LINAX ${ }^{\circledR}$ Lxs 600F120 of series production 39
5.4 Load parameters of Guides Lxs F120 39
5.5 Installation dimensions LINAX ${ }^{\circledR}$ Lxs 080F120 -Lxs 1600F120 40
6 LINAX ${ }^{\circledR}$ Lxe F40 43
6.1 External Dimensions LINAX ${ }^{\circledR}$ Lxe F40 43
6.2 Dynamics LINAX ${ }^{\circledR}$ Lxe 44
6.2.1 Power Supply, Speed Lxe 44
6.3 Precision LINAX ${ }^{\circledR}$ Lxe 45
6.3.1 Positioning Lxe 45
6.3.2 Guidings of Slider Lxe 46
6.4 Stress Values of Guides Lxe 46
6.5 Dimensions LINAX ${ }^{\circledR}$ Lxe 47
6.5.1 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 250F40 48
6.5.2 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 400F40 48
6.5.3 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 550F40 48
6.5.4 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 800F40 49
6.5.5 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 1000F40 49
7 Weight Compensation 50
7.1 Weight Compensation STEP CAD Data 50
7.2 Weight Compensation Lxc 44F08 50
7.3 Weight Compensation Lxc 85F10, 50
Lxc 80F40, Lxc 176F40 50
7.4 Weight Compensation Lxu 40F60, Lxu 80F60, Lxu 160F60 51
8 Front Flange Connections LINAX ${ }^{\circledR}$ Lxu 52
9 Installation, Important Instructions 53
9.1 Flatness for Mounting on Ground Plate 53
9.2 Flatness for Mounting on Slider 53
9.3 Flatness Practical Test 53
9.4 Power Supply 53
9.5 Earthing concept 54
10 Maintenance, Lifespan 55
10.1 Lubrication of LINAX ${ }^{\circledR}$ Lxc Types 55
10.2 Lifespan Expectations LINAX ${ }^{\circledR}$ Lxc Types 55
10.3 Lubrication of LINAX ${ }^{\circledR}$ Lxu, Lxs, Lxe Types 56
10.4 Lifespan Expectations Lxu, Lxs, Lxe Types 56
10.5 Lifespan Extending Measures 56
$J \quad N \quad N \quad Y \quad$ N N
10.6 Cleaning Glass Scale 57
11 Safety, Environment 58
11.1 Safety with XENAX ${ }^{\circledR}$ Servocontroller 58
11.2 Environment Conditions 58

1 Code for LINAX ${ }^{\circledR}$ Types

2 LINAX ${ }^{\text {® }}$ Lxc F08/F10/F40

2.1 External Dimensions LINAX ${ }^{\circledR}$ Lxc

	LxC	LxC	LxC	LxC
LINAX	L4F08	85F10	135F10	230F10
L[mm	78	144	194	290

LINAX	LxC	Lxc	Lxc
	$\mathbf{8 0 F 4 0}$	$\mathbf{1 7 6 F 4 0}$	272F40
L[mm $]$	169	265	361

Lxc absolute zero point according to REFERENCE: Slider extended towards the connection cable

2.2 Dynamics LINAX ${ }^{\circledR}$ Lxc

LINAX ${ }^{\text {® }}$	Stroke [mm]	Force [N] nom./peak	$\begin{gathered} \text { Speed } \\ \mathrm{v} \text {-max }[\mathrm{m} / \mathrm{s}] \end{gathered}$	Acceleration $a-\max \left[m / s^{2}\right]$	Min. travel Time/stroke [ms]	Weight Slider [g]	Weight Geko [g]	Weight Total [g]
Lxc 44F08	44	8/24	2.0	120	40	130	90	350
Lxc 85F10	85	10/30	2.5	85	70	230	180	650
Lxc 135F10	135	10/30	2.8	60	95	320	-	880
Lxc 230F10	230	10/30	3.2	45	145	450	-	1200
Lxc 80F40	80	40/114	2.0	100	60	520	335	1470
Lxc 176 F 40	176	40/114	2.5	90	100	750	530	2150
Lxc 272F40	272	40/114	2.8	75	140	1050	-	2800

2.2.1 Power Supply, Speed Lxc

Lxc F10 Power Supply, Force, Speed

N

2.3 Precision LINAX ${ }^{\circledR}$ Lxc

2.3.1 Positioning Lxc

Standard resolution of optical measuring scale Repeatability

Optional optical measuring scale with high resolution Repeatability Linear expansion optical measuring scale

Reference

Mechanical zero point absolute

Correction table for positionerrors with Servo controller Xvi 48V8/75V8/75V8S
$1 \mu \mathrm{~m} /$ counter increment
$<+/-1.5 \mu \mathrm{~m}$

100 nm / counter increment
$<+/-400 \mathrm{~nm}$
$8.5 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$

Automatic calculation of the absolute position through the distance coded reference marks, max 10 mm , direction of reference can be selected. The reference has to be completed only once after powering on the logic power (24 V). The absolute position will be stored until the logic power is turned off (XENAX ${ }^{\circledR}$ Servo controller).

It is located 1.5 mm before the mechanical limit. This is where the slider is positioned on the right end while the cable case is in the front of the user.

The XENAX ${ }^{\circledR}$ Servo controller offers the possibility to correlate the encoder position with the actual position.

2.3.2 Guidings of Slider Lxc

Cross roller bearings with are used for the LINAX ${ }^{\circledR}$ Lxc linear motor axes. The cross roller bearings are installed in cages and are equipped with forced centering. This construction is very robust and reliable (>350 Mio cycles with F08/F10). The LINAX ${ }^{\circledR}$ Lxc linear motor axes have the following tolerances. These data is based on measures with linear motors free of load.

roll

LINAX $^{\circledR}$	Running Accuracy horizontal EYX $[\mu \mathrm{m}]$	Running Accuracy vertical EZX $[\mu \mathrm{m}]$	Tilt Error QX (roll) $[$ arcsec]	Tilt Error QY (pitch) $[\operatorname{arcsec}]$	Tilt Error QZ (yaw) [arcsec]	Tolerance Constr. height $[\mathrm{mm}]$
Lxc 44F08	± 5	± 5	± 15	± 30	± 20	$\pm 0,1$
Lxc 85F10	± 7	± 7	± 20	± 35	± 25	$\pm 0,1$
Lxc 135F10	± 10	± 10	± 20	± 40	± 30	$\pm 0,1$
Lxc 230F10	± 12	± 12	± 20	± 50	± 35	$\pm 0,1$
Lxc 80F40	± 8	± 8	± 20	± 30	± 30	$\pm 0,1$
LXc 176F40	± 10	± 10	± 20	± 35	± 35	$\pm 0,1$
Lxc 272F40	± 12	± 12	± 20	± 40	± 40	$\pm 0,1$

2.3.3 Typical measurement results LINAX ${ }^{\circledR}$ Lxc 230F10 of series production

Position accuracy

Tilt error

QX roll:	± 9.5	asec
QY pitch:	± 10.3	asec
QZ yaw:	± 9	asec

2.4 Load parameters of Guides Lxc

LINAX ${ }^{\text {® }}$	Mx max [Nm]	Fy max [N] Fz max [N]	My $\max [\mathrm{Nm}]$ Mz max [Nm]
Lxc 44F08	17	787	11
Lxc 85F10	37	1722	43
Lxc 135 F 10	47	2181	66
Lxc 230F10	49	2296	95
Lxc 80F40	129	4080	133
Lxc 176 F 40	165	5236	230
Lxc 272F40	186	5916	328

Besides adhering to the individual maximal loads, the following equation must comply if there are multiple
 forces and moments acting simultaneously on the linear motor:
$\frac{|\mathrm{Fy}|}{\text { Fy } \max }+\frac{|\mathrm{Fz}|}{\text { Fz max }}+\frac{|\mathrm{Mx}|}{\mathrm{Mx} \mathrm{max}^{\max }}+\frac{|\mathrm{My}|}{\mathrm{My}_{\max }}+\frac{|\mathrm{Mz}|}{\mathrm{Mz}_{\max }} \leq 1$
2.5 Dimensions LxC F08/10
2.5.4 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 44F08

2.5.6 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 135 F 10

2.5.7 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 230F10

2.6 Dimensions Lxc F40

2.6.1 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 80F40

2.6.2 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 176F40

2.6.3 Installation Dimensions LINAX ${ }^{\circledR}$ Lxc 272F40

3 LINAX ${ }^{\circledR}$ Lxu F60

3.1 External Dimensions LINAX ${ }^{\circledR}$ Lxu F60

LINAX ${ }^{\text {® }}$ Lxu	L [mm]
Lxu 40F60	170
Lxu 80F60	210
Lxu 160F60	290
Lxu 240F60	370
Lxu 320F60	450

Lxs and Lxu
Rotary connector case in 90° pattern Default cable connector directed to the right

Lxu absolute zero point according to REFERENCE: Slider extended towards the connection cable

3.2 Dynamics LINAX ${ }^{\circledR}$ Lxu

3.2.1 Slider in Motion

LINAX ${ }^{\text {® }}$	Stroke [mm]	Force [N] nom./peak	$\begin{gathered} \text { Speed } \\ \mathrm{v} \text {-max }[\mathrm{m} / \mathrm{s}] \end{gathered}$	Acceleration a-max $\left[m / s^{2}\right]$	Min. travel time/stroke [ms]	Weight Slider [g]	Weight comp.	Weight Total [g]
Lxu 40F60	40	60/180	2.0	120	40	950	360	1700
Lxu 80F60	80	60/180	2.5	120	55	950	360	1900
Lxu 160F60	160	60/180	3.0	120	80	950	590	2200
Lxu 240F60	240	60/180	3.5	120	100	950	820	2500
Lxu 320F60	320	60/180	3.8	120	115	950	-	2900

3.2.2 Ground Plate in Motion

LINAX $^{\circledR}$	Stroke $[\mathrm{mm}]$	Force $[\mathrm{N}]$ nom./peak	Speed v-max $[\mathrm{m} / \mathrm{s}]$	Acceleration a-max $\left[\mathrm{m} / \mathrm{s}^{2}\right]$	Min. travel time/stroke $[\mathrm{ms}]$	Weight Ground Plate $[\mathrm{g}]$	Weight comp.	Weight Total $[\mathrm{g}]$
Lxu 40F60	40	$60 / 180$	2.0	160	35	750	350	1700
LXu 80F60	80	$60 / 180$	2.5	120	55	950	350	1900
LXu 160F60	160	$60 / 180$	3.0	100	85	1250	590	2200
LXu 240F60	240	$60 / 180$	3.5	70	120	1550	820	2500
Lxu 320F60	320	$60 / 180$	3.8	65	145	1950	-	2900
All values only valid with XENAX Xvi and 20\% s-Curve								

3.2.3 Power Supply, Speed Lxu

Lxu Power Supply, Force, Speed

3.3 Precision LINAX ${ }^{\circledR}$ Lxu

3.3.1 Positioning Lxu

Standard magnetic measuring scale
Repeatability

Optional optical measuring scale
Repeatability

Optional optical measuring scale with high resolution Repeatability

Linear expansion magnetic measuring scale

Linear expansion optical measuring scale

Correction table for positionerrors with servo controller Xvi 48V8/75V8/75V8S
$1 \mu \mathrm{~m} / \mathrm{counter}$ increment
$<+/-5 \mu \mathrm{~m}$
$1 \mu \mathrm{~m} /$ counter increment
$<+/-2 \mu \mathrm{~m}$

100nm / counter increment
$<+/-500 \mathrm{~nm}$
$11 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$
$8.5 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ controller). cable case is in the front of the user.

Automatic calculation of the absolute position through the distance coded reference marks, max 10 mm with optical and max 40 mm with magnetic measuring scale, direction of reference can be selected. The reference has to be completed only once after powering on the logic power (24 V). The absolute position will be stored until the logic power is turned off (XENAX ${ }^{\circledR}$ Servo

It is located 1.5 mm before the mechanical limit. This is where the slider is positioned on the right end while the

The XENAX ${ }^{\circledR}$ servo controller offers the possibility to correlate the encoder position with the actual position.

3.3.2 Guidings of Slider Lxu

Ball bearing guides are used for the LINAX ${ }^{\circledR}$ Lxu linear motors. This guiding system is maintenance free for $20 \times 000 \mathrm{~km}$ or five years as stated by the supplier.

The LINAX ${ }^{\circledR}$ Lxu linear motor axes have following tolerances as a standard. These data is based on measures with linear motors free of load.

LINAX $^{\circledR}$	Running Accuracy horizontal EYX $[\mu \mathrm{m}]$	Running Accuracy vertical EZX $[\mu \mathrm{m}]$	Tilt Error QX (roll) $[\operatorname{arcsec}]$	Tilt Error QY (pitch) $[\operatorname{arcsec}]$	Tilt Error QZ (yaw) $[\operatorname{arcsec}]$	Tolerance Constr. height $[\mathrm{mm}]$
Lxu 40F60	± 5	± 4	± 8	± 10	± 15	$\pm 0,1$
Lxu 80F60	± 5	± 4	± 8	± 10	± 20	$\pm 0,1$
Lxu 160F60	± 8	± 5	± 10	± 20	± 25	$\pm 0,1$
Lxu 240F60	± 10	± 5	± 10	± 20	± 30	$\pm 0,1$
Lxu 320F60	± 12	± 6	± 10	± 20	± 35	$\pm 0,1$

3.3.3 Typical measurement results LINAX ${ }^{\circledR}$ Lxu 320F60

 of series productionPosition accuracy

Resolution optical:	$1 \mu \mathrm{~m}$
Absolute accuracy:	$\pm 5 \mu \mathrm{~m}$
Repeatability forward:	$0.6 \mu \mathrm{~m}$
Repeatability backward:	$0.7 \mu \mathrm{~m}$
Repeatability bi-directional:	$1.2 \mu \mathrm{~m}$

Tilt error

| QX roll: | $\pm 6.8 \mathrm{asec}$ |
| ---: | ---: | ---: |
| QY pitch: | $\pm 7.6 \mathrm{asec}$ |
| QZ yaw: | $\pm 15.2 \mathrm{asec}$ |

3.4 Stress Values of Guides Lxu

$\begin{array}{cccc}\text { LINAX }{ }^{\ominus} \text { Lxu } & \text { Mx max } & \text { Fy max }[\mathrm{N}] & \text { My max }[\mathrm{Nm}] \\ & {[\mathrm{Nm}]} & \text { Fz } \max [\mathrm{N}] & \text { Mz } \max [\mathrm{Nm}]\end{array}$

Lxu xxF60	149	5400	211

Besides adhering to the individual maximal loads, the following equation must comply if there are multiple forces and moments acting simultaneously on the linear motor:

$\frac{|\mathrm{Fy}|}{\text { Fy } \max }+\frac{|\mathrm{Fz}|}{\text { Fz max }}+\frac{|\mathrm{Mx}|}{\mathrm{Mx} \mathrm{max}_{\max }}+\frac{|\mathrm{My}|}{\mathrm{My} \mathrm{max}_{\max }}+\frac{|\mathrm{Mz}|}{\mathrm{Mz}_{\max }} \leq 1$
3.5 Installation Dimensions LINAX ${ }^{\circledR}$ Lxu 40 Lxu 320

Type	Stroke[mm]	L[mm]	A[mm]	B[mm]	Hole pattern
Lxu 40F60	40	170	80	40	2
Lxu 80F60	80	210	160	120	1
Lxu 160F60	160	290	240	200	1
Lxu240F60	240	370	320	280	1
Lxu 320F60	320	450	400	360	1

Cross table with Lxc F08/F10 Monoblock

Pin holes

Cantilever with Lxu F60 slider (back to back)

Cantilever with Ex F20

Cross table width Lxc F40 Monoblock

Application with Lxu front flange

4 LINAX ${ }^{\circledR}$ Lxs $\mathbf{F 6 0}$

4.1 External Dimensions Lxs F60

LINAX ${ }^{\circledR}$ Lxs	L [mm]
Lxs 160F60	290
Lxs 200F60	330
Lxs 320F60	450
Lxs 400F60	530
Lxs 520F60	650
Lxs 600F60	730
Lxs 800F60	930
Lxs 1000F60	1130
Lxs 1200F60	1330
Lxs 1600F60	1730

Lxs mechanical zero point according to REFERENCE: Carriage positioned 1.5 mm from the stop on the right, when viewed from the connector housing.

Lxs and Lxu
Rotatable connector housing in 90° increments
Standard cable outlet to the right when viewed from the connector housing.

4.2 Dynamics LINAX ${ }^{\circledR}$ Lxs F60

LINAX $^{\circledR}$	Stroke $[\mathrm{mm}]$	Force $[\mathrm{N}]$ nom./peak	Speed v-max $[\mathrm{m} / \mathrm{s}]$	Acceleration a-max $\left[\mathrm{m} / \mathrm{s}^{2}\right]$	Min. travel Time/stroke $[\mathrm{ms}]$	Weight Slider $[\mathrm{g}]$	Weight Total $[\mathrm{g}]$
Lxs 160F60	160	$60 / 180$	3.0	120	80	1000	2600
LXs 200F60	200	$60 / 180$	3.5	120	90	1000	2800
LXs 320F60	320	$60 / 180$	3.8	120	120	1000	3450
LXs 400F60	400	$60 / 180$	4.0	120	135	1000	3900
LXs 520F60	520	$60 / 180$	4.0	120	165	1000	4500
LXs 600F60	600	$60 / 180$	4.0	120	185	1000	5000
LXs 800F60	800	$60 / 180$	4.0	120	235	1000	6100
LXs 1000F60	1000	$60 / 180$	4.0	120	285	1000	7200
LXs 1200F60	1200	$60 / 180$	4.0	120	335	1000	8400
LXs 1600F60	1600	$60 / 180$	4.0	120	435	1000	10600
All values only valid with XENAX ${ }^{\text {Xvi and 20\% S-Curve }}$							

4.2.1 Power Supply, Speed Lxs F60

Lxs Power Supply, Force, Speed

Standard magnetic, resolution Repeatability Optional optical, resolution Repeatability
Optional optical high resolution Repeatability Length expansion magnetic measuring scale

Length expansion optical measuring scale

Reference:
Automatic calculation of the absolute position by crossing two distance-coded reference marks.

Position of mechanical zero point

Software-based correction of position errors. Mechanical pitch and roll errors result in additional position errors: The farther away from the scale, the greater the error.

4.3 Precision $\operatorname{LINAX}{ }^{\circledR}$ Lxs

4.3.1 Positioning Lxs

```
\(1 \mu \mathrm{~m} /\) increment
\(<+/-5 \mu \mathrm{~m}\)
\(1 \mu \mathrm{~m} /\) increment, available up to 1200 mm stroke <+/-2m
100 nm / increment, available up to 1200 mm stroke <+/-500nm
\(11 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}\)
```


$8.5 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$

Required maximum travel distance for reference: max 10 mm for the optical system
max 40 mm for the magnetic Lxs 160-600
$\max 60 \mathrm{~mm}$ for the magnetic Lxs 800-1600
The travel direction is selectable. The reference procedure only needs to be initiated once after turning on the logic power supply (24V). The absolute position is maintained as long as the logic power supply remains connected (XENAX ${ }^{\circledR}$ Servocontroller).
1.5 mm away from the mechanical limit stop, with the carriage positioned at the right end when viewed from the connector housing side.

With an interferometer at the relevant measuring point, these position errors are captured in a tabular form. This correction table is then stored in the XENAX ${ }^{\circledR}$ Xvi Servocontroller. The positions are corrected according to this table, with linear interpolation of the intermediate positions.

Measurement system $1 \mu \mathrm{~m}$ optical, relevant measurement point 150 mm above the scale

- Gray, position errors measured at the relevant point of the setup, measurement system $1 \mu \mathrm{~m}$ resolution optical
- Yellow, position errors measured at the same point with correction using the correction table

4.3.2 Guidings of Slider Lxs F60

In the LINAX ${ }^{\circledR}$ Lxs linear motor axes, ball recirculating guides are used. These guides are maintenance-free for up to $20,000 \mathrm{~km}$ or 3 years. After that, they should be re-lubricated.

The LINAX ${ }^{\circledR}$ Lxs linear motor axes are delivered with the following tolerances as standard. The specifications are based on an unloaded condition.

LINAX ${ }^{\text {® }}$	Running Accuracy horizontal EYX $[\mu \mathrm{m}]$	Running Accuracy vertical EZX $[\mu \mathrm{m}]$	Tilt Error QX (roll) [arcsec]	Tilt Error QY (pitch) [arcsec]	Tilt Error QZ (yaw) [arcsec]	Tolerance Constr. height [mm]
Lxs 160F60	± 5	± 3	± 5	± 10	± 10	$\pm 0,1$
LxS 200F60	± 5	± 3	± 5	± 10	± 10	$\pm 0,1$
Lxs 320F60	± 8	± 4	± 15	± 20	± 15	$\pm 0,1$
Lxs 400F60	± 10	± 4	± 15	± 20	± 15	$\pm 0,1$
Lxs 520F60	± 10	± 4	± 20	± 20	± 20	$\pm 0,1$
Lxs 600F60	± 10	± 5	± 20	± 20	± 20	$\pm 0,1$
Lxs 800F60	± 10	± 7	± 25	± 25	± 25	$\pm 0,1$
Lxs 1000F60	± 12	± 8	± 30	± 25	± 25	$\pm 0,1$
Lxs 1200F60	± 13	± 9	± 30	± 25	± 25	$\pm 0,1$
Lxs 1600F60	± 16	± 12	± 35	± 30	± 30	$\pm 0,1$

4.3.3 Typical measurement results LINAX ${ }^{\circledR}$ Lxs 600 F 60 of series production

Position accuracy

Resolution optical:	$1 \mu \mathrm{~m}$
Absolute accuracy:	$\pm 2.9 \mu \mathrm{~m}$
Repeatability forward:	$0.7 \mu \mathrm{~m}$
Repeatability backward:	$0.7 \mu \mathrm{~m}$
Repeatability bi-directional:	$1.3 \mu \mathrm{~m}$

Tilt error

QX roll:	± 4.7	asec
QY pitch:		± 6.9
asec		
QZ yaw:		± 5.1
		asec

4.4 Load parameters of Guides Lxs

LINAX® ${ }^{\circledR}$ Lxs	Mx max $[\mathrm{Nm}]$	Fy max [N] Fz max $[\mathrm{N}]$	My max $[\mathrm{Nm}]$ Mz max $[\mathrm{Nm}]$
Lxs xxF60	243	5400	211

Besides adhering to the individual maximal loads, the following equation must comply if there are multiple forces and moments acting simultaneously on the linear motor:
$\frac{|\mathrm{Fy}|}{\text { Fy } \max }+\frac{|\mathrm{Fz}|}{\text { Fz max }}+\frac{|\mathrm{Mx}|}{\mathrm{Mx} \mathrm{max}^{\max }}+\frac{|\mathrm{My}|}{\mathrm{My} \mathrm{max}_{\max }}+\frac{|\mathrm{Mz}|}{\mathrm{Mz}_{\max }} \leq 1$

4.5 Installation Dimensions LINAX® ${ }^{\circledR}$ Lxs 160 Lxs 1600

Type	Stroke[mm]	L[mm]	A[mm]	B[mm]	Hole pattern
Lxs 160F60	160	290	240	200	1
Lxs 200F60	200	330	240	200	2
Lxs 320F60	320	450	400	360	1
Lxs 400F60	400	530	480	440	1
Lxs 520F60	520	650	560	520	2
Lxs 600F60	600	730	640	600	2
Lxs 800F60	800	930	880	840	1
Lxs 1000F60	1000	1130	1040	1000	2
Lxs 1200F60	1200	1330	1280	1240	1
Lxs 1600F60	1600	1730	1680	1640	1

Cross table with Lxc F08 / F10 Monoblock

Cantilever with Lxu F60 slider (back to back)

Cross table width Lxc F40 Monoblock

Application with Lxu front flange

Cross table with Lxs F60 Base plate

5 LINAX ${ }^{\circledR}$ Lxs ${ }^{120}$

5.1 External Dimensions Lxs F120

LINAX ${ }^{\otimes}$ Lxs	L [mm]	Zero point [mm]
Lxs 080F120	243	20
Lxs 200F120	363	40
Lxs 400F120	563	20
Lxs 520F120	683	40
Lxs 600F120	763	40
Lxs 800F120	963	40
Lxs 1000F120	1163	40
Lxs 1200F120	1363	40
Lxs 1600F120	1763	40

Lxs and Lxu
Rotatable connector housing in 90° increments Standard cable outlet to the right when viewed from the connector housing.

5.2 Dynamics LINAX ${ }^{\circledR}$ Lxs F120

LINAX ${ }^{\text {® }}$	Stroke [mm]	Force [N] nom./peak	$\begin{gathered} \text { Speed } \\ \mathrm{v} \text {-max }[\mathrm{m} / \mathrm{s}] \end{gathered}$	Acceleration $a-\max \left[\mathrm{m} / \mathrm{s}^{2}\right]$	Min. travel Time/stroke [ms]	Weight Slider [kg]	Weight Total [kg]
Lxs 080F120	080	120/300	1.8/2.8/*3.8	100	58	2.30	4.70
Lxs 200F120	200	120/300	$1.8 / 2.8 / * 3.8$	100	108	2.30	5.90
Lxs 400F120	400	120/300	$1.8 / 2.8 / * 3.8$	100	179	2.30	7.80
Lxs 520F120	520	120/300	1.8/2.8/*3.8	100	222	2.30	9.00
Lxs 600F120	600	120/300	1.8/2.8/*3.8	100	250	2.30	9.80
Lxs 800F120	800	120/300	1.8/2.8/*3.8	100	322	2.30	11.80
Lxs 1000F120	1000	120/300	1.8/2.8/*3.8	100	393	2.30	13.70
Lxs 1200F120	1200	120/300	1.8/2.8/*3.8	100	464	2.30	15.70
Lxs 1600F120	1600	120/300	1.8/2.8/*3.8	100	607	2.30	19.60

All values are only valid with $\mathrm{XENAX}{ }^{\circledR}$ Xvi and a 20% S-Curve.

5.2.1 Power supply voltage versus speed Lxs F120

Standard magnetic, resolution
Repeatability
Optional optical, resolution
Repeatability

Optional optical high resolution
Repeatability
Length expansion magnetic measuring scale

Length expansion of optical stainless steel tape

Reference run:
Position of mechanical zero point

Software-based correction of position errors. Mechanical pitch and roll errors result in additional position errors: The farther away from the scale, the greater the error.

5.3 Precision LINAX ${ }^{\circledR}$ Lxs F120

5.3.2 Absolute positioning Lxs F120

$1 \mu \mathrm{~m} /$ absolute
$<+/-4 \mu \mathrm{~m}$
$1 \mu \mathrm{~m} /$ absolute
$<+/-2 m$
$100 \mathrm{~nm} /$ absolute
<+/-500nm
$11 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$
$10.6 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$

Not required, as the position is available immediately after turning on with the absolute measurement system. Positioned 1.5 mm away from the mechanical end limit, the carriage is at the right end when viewed from the connector housing. The center of the carriage is aligned with a pinhole.

With an interferometer at the relevant measuring point, these position errors are captured in a tabular form. This correction table is then stored in the XENAX ${ }^{\circledR}$ Xvi Servocontroller. The positions are corrected according to this table, with linear interpolation of the intermediate positions.

Measurement system $1 \mu \mathrm{~m}$ optical, relevant measurement point 150 mm above the scale

- Gray, position errors measured at the relevant point of the setup, measurement system $1 \mu \mathrm{~m}$ resolution optical
- Yellow, position errors measured at the same point with correction using the correction table

5.3.3 Carriage guide Lxs F120

The LINAX ${ }^{\circledR}$ Lxs linear motor axes utilize robust 4row ball recirculating guides. These guides are maintenance-free for up to $20,000 \mathrm{~km}$ or 5 years. After that, they should be re-lubricated.

The LINAX ${ }^{\circledR}$ Lxs linear motor axes are delivered with the following tolerances as standard. The specifications are based on an unloaded condition.

LINAX ${ }^{\text {® }}$	Running Accuracy horizontal EYX [$\mu \mathrm{m}$]	Running Accuracy vertical EZX [$\mu \mathrm{m}$]	Tilt Error QX (roll) [arcsec]	Tilt Error QY (pitch) [arcsec]	Tilt Error QZ (yaw) [arcsec]	Tolerance Constr. height [mm]
Lxs 080F120	± 4	± 2	± 4	± 10	± 5	$\pm 0,1$
Lxs 200F120	± 5	± 3	± 5	± 15	± 10	$\pm 0,1$
Lxs 400F120	± 10	± 4	± 15	± 30	± 15	$\pm 0,1$
Lxs 520F120	± 10	± 4	± 20	± 30	± 20	$\pm 0,1$
Lxs 600F120	± 10	± 5	± 20	± 30	± 20	$\pm 0,1$
Lxs 800F120	± 10	± 7	± 25	± 35	± 25	$\pm 0,1$
Lxs 1000F120	± 12	± 8	± 30	± 35	± 25	$\pm 0,1$
Lxs 1200F120	± 13	± 9	± 30	± 35	± 25	$\pm 0,1$
Lxs 1600F120	± 16	± 12	± 35	± 40	± 30	$\pm 0,1$

5.3.4 Typical measurement results LINAX ${ }^{\circledR}$ Lxs 600F120 of series production

Position accuracy absolute at relevant measuring point

Resolution optical:	$1 \mu \mathrm{~m}$
Absolute accuracy:	$\pm 2.9 \mu \mathrm{~m}$
Repeatability forward:	$0.6 \mu \mathrm{~m}$
Repeatability backward:	$0.7 \mu \mathrm{~m}$
Repeatability bi-directional:	$1.2 \mu \mathrm{~m}$

Tilt error

QX roll:	± 2.4	asec
QY pitch:	$\pm 13.3 \mathrm{asec}$	
QZ yaw:	± 11.1	asec

5.4 Load parameters of Guides Lxs F120

LINAX ${ }^{\circledR}$ Lxs \quad Mx max \quad Fy max [N$] \quad$ My max [Nm]
$[\mathrm{Nm}] \quad \mathrm{Fz} \max [\mathrm{N}] \quad \mathrm{Mz} \max [\mathrm{Nm}]$
$\begin{array}{llll}L x s \\ x x F 120 & 444 & 8220\end{array}$

Besides adhering to the individual maximal loads, the following equation must comply if there are multiple forces and moments acting simultaneously on the linear motor:

5.5 Installation dimensions LINAX ${ }^{\circledR}$ Lxs 080F120 -Lxs 1600F120

Typ	Stroke [mm]	L[mm]	A[mm]	B[mm]
Lxs 080F120	080	243	200	120
Lxs 200F120	200	363	320	280
Lxs 400F120	400	563	520	440
Lxs 520F120	520	683	640	600
Lxs 600F120	600	763	720	680
Lxs 800F120	800	963	920	880
Lxs 1000F120	1000	1163	1120	1080
Lxs 1200F120	1200	1363	1320	1280
Lxs 1600F120	1600	1763	1720	1680

Cantilever with Lxu F60 carriage (back to back)

Portal with Lxu face flange

Cross table with Lxs F60/120 base plate

Cantilever with Ex F20

Mounting Rxhq $\mathbf{1 1 0}$

6 LINAX ${ }^{\circledR}$ Lxe F40

6.1 External Dimensions LINAX ${ }^{\circledR}$ Lxe F40

LINAX ${ }^{\circledR}$ Lxe	L [mm]
Lxe 250F60	386
Lxe 400F60	536
Lxe 550F60	686
Lxe 800F60	936
Lxe 1000F60	1136

Lxe
Cable outlet to the left or right Default cable outlet to the right

Lxe absolute zero point according to REFERENCE:
Slider extended towards the connection cable

LINAX ${ }^{\text {® }}$	6.2 Dynamics LINAX ${ }^{\circledR}$ Lxe						
	Stroke [mm]	Force [N] nom./peak	$\begin{gathered} \text { Speed } \\ \mathrm{v} \text {-max }[\mathrm{m} / \mathrm{s}] \end{gathered}$	Acceleration $\mathrm{a}-\mathrm{max}\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	Min. travel Time/stroke [ms]	Weight Slider [g]	Weight Total [g]
Lxe 250F40	250	40/114	3.5	75	120	980	3080
Lxe 400F40	400	40/114	4.0	75	155	980	3850
Lxe 550F40	550	40/114	4.0	75	190	980	4620
Lxe 800F40	800	40/114	4.0	75	255	980	5900
Lxe 1000F40	1000	40/114	4.0	75	305	980	6930

6.2.1 Power Supply, Speed Lxe

Lxe Power Supply, Force, Speed
N

	6.3 Precision LINAX ${ }^{\circledR}$ Lxe
	6.3.1 Positioning Lxe
Standard resolution of optical measuring scale	$1 \mu \mathrm{~m} / \mathrm{counter}$ increment
Repeatability	$<+/-2 \mu \mathrm{~m}$
Optional optical measuring scale with high resolut	$100 \mathrm{~nm} /$ counter increment
Repeatability	<+/-500nm
Linear expansion optical measuring scale	$8.5 \mu \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$
Reference	Automatic calculation of the absolute position through the distance coded reference marks, max 10 mm , direction of reference can be selected. The reference has to be completed only once after powering on the logic power (24 V). The absolute position will be stored until the logic power is turned off (XENAX ${ }^{\circledR}$ Servo controller).
Mechanical zero point absolute	1.5 mm before the mechanical limit. This is where the slider is positioned on the right end while the cable case is in the front of the user.
Correction table for positionerrors with servo controller Xvi 48V8/75V8/75V8S	The XENAX ${ }^{\circledR}$ servo controller offers the possibility to correlate the encoder position with the actual position.

6.3.2 Guidings of Slider Lxe

For the LINAX ${ }^{\circledR}$ Lxe linear motor axis, ball bearing guides are used. This guiding system is maintenance free for $20 \times 000 \mathrm{~km}$ or five years as stated by the supplier. The LINAX ${ }^{\circledR}$ Lxe linear motor axes have following tolerances as a standard. These data is based on measures with linear motors free of load.

LINAX ${ }^{\text {® }}$						
	Running Accuracy horizontal EYX $[\mu \mathrm{m}]$	Running Accuracy vertical EZX $[\mu \mathrm{m}]$	Tilt Error QX (roll) $[$ arcsec]	Tilt Error QY (pitch) [arcsec]	Tilt Error QZ (yaw) [arcsec]	Tolerance Constr. height $[\mathrm{mm}]$
Lxe 250F40	± 8	± 5	± 10	± 10	± 15	$\pm 0,1$
Lxe 400F40	± 10	± 8	± 10	± 10	± 20	$\pm 0,1$
Lxe 550F40	± 12	± 8	± 20	± 20	± 25	$\pm 0,1$
Lxe 800F40	± 14	± 10	± 25	± 25	± 25	$\pm 0,1$
Lxe 1000F40	± 16	± 10	± 25	± 25	± 30	$\pm 0,1$

6.4 Stress Values of Guides Lxe

LINAX $^{\circledR}$ Lxe	$M_{\max }$ $[\mathrm{Nm}]$	Fy max $[\mathrm{N}]$ $\mathrm{Fz} \max [\mathrm{N}]$	My max $[\mathrm{Nm}]$ $\mathrm{Mz} \max [\mathrm{Nm}]$
Lxe xxF40	205	5400	194

Besides adhering to the individual maximal loads, the following equation must comply if there are multiple forces and moments acting simultaneously on the linear motor:

6.5 Dimensions LINAX® ${ }^{\circledR}$ Lxe

6.5.1 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 250F40

6.5.2 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 400F40

6.5.3 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 550F40

6.5.4 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 800F40

6.5.5 Installation Dimensions LINAX ${ }^{\circledR}$ Lxe 1000F40

7 Weight Compensation
In case of power interruption the motor of the LINAX ${ }^{\circledR}$ linear motors becomes powerless. If the axis is mounted vertically, the slider falls downwards. The optional available weight compensation can prevent this. If the XENAX® Xvi Servo Controller is connected and the logic power remains under power (e.g. emergency stop) the coils are shorted. The linear motor which acts as generator brakes the drive. The weight compensation will avoid that the slider is moving constantly downwards.

When compared to a simple brake, a further great advantage of the weight compensation is the relief of the vertical linear motor. With the weight compensation the motor operates weightlessly and heats much less. This savings in energy can be re-used for higher dynamics.

7.1 Weight Compensation STEP CAD Data

CAD drawings can be downloaded as .STEP files from http://www.jennyscience.ch.

保 compensation for the compact Lxc 44F08 linear motor axis is available in the version with spring force and with compressed air

The weight compensation with spring force can be equipped with 4 different springs for external payloads of $0-200 \mathrm{~g}, 200-400 \mathrm{~g}, 400-600 \mathrm{~g}$ and $600-900 \mathrm{~g}$.

7.2 Weight Compensation Lxc 44F08

7.3 Weight Compensation Lxc 85F10,

Lxc 80F40, Lxc 176 F40

The weight compensation is mounted on the right side and is based on air pressure while there is no air consumption. With a customary air pressure regulator e.g. Festo "VRPA" the compensation force can be adjusted until the weight of the slider and the payload are fully compensated. If there is power interruption the slider remains in position or moves slowly upward depending on the adjustment of the air pressure regulator. The weight compensation for the Lxc 85F10 can also be mounted on the right side.
7.4 Weight Compensation Lxu 40F60, Lxu 80F60, Lxu 160F60

This weight compensation for the Lxu axis is also based on air pressure, while there is no air consumption. The air connection of weight compensation is located on the connector case to save room and to keep cables one-sided. With a customary air pressure regulator e.g. Festo "VRPA" the compensation force can be adjusted until the slider holds position or moves upwards in case of power interruption.

Effective direction of weight compensation with moving ground plate.

Effective direction of the weight compensation with moving the slide.

8 Front Flange Connections LINAX ${ }^{\circledR}$ Lxu

There can be mounted a further Lxu or a Lxc linear motor axis on the front of the LINAX ${ }^{\circledR}$ Lxu. If the front plate is removed, the front flange Lxu can be mounted with 4 screws and 2 centering pins. These front flanges can be rotated, mounted and centred in a 90 pattern
(except from ELAX ${ }^{\circledR}$).

Lxu-Lxc F08/F10

Lxu-Elax flat

Lxu-Lxu
Lxu-Lxc F40

Lxu-Elax upright

If the LINAX ${ }^{\circledR}$ linear motor axes are mounted on a ground plate, it has to have a flatness of 0.01 mm over a length of 200 mm . If the flatness is out of this
tolerance, the LINAX ${ }^{\circledR}$ linear motor axis can be distorted when screwed to the ground plate which might cause the guidings to seize. This increases the wear and tear, reduces the lifespan and might even destroy the guiding system

These same conditions hold true for components that are mounted on the slider of the LINAX ${ }^{\circledR}$ linear motor axis. The contact surface has to have a flatness of 0.01 mm over a length of 200 mm .

Before mounting the ground plate or the slider, please test how smooth the slider can be moved by hand. After tightening the screws, move the slider again by hand. There should not be any noticeable changes in smoothness, otherwise the contact surfaces have to be revised.

The typical POWER supply is 24 V DC. For the stronger LINAX ${ }^{\circledR}$ F40 / F60 axes with high masses ($>2 \mathrm{~kg}$) or high dynamics ($>1.5 \mathrm{~m} / \mathrm{s}$) a POWER supply of 48 V or 72 V DC is applicable. The current consumption per axis can be up to 8 A and 18 A peak per axis. Depending on mass in motion, profile and power supply voltage.

For a fuse protection of the power supply it must be considered that a short peak current of 8 A can be reached for the rotating field adjustment.

For a detailed calculation of the required power supply in your application, please contact our support https://www.jennyscience.ch/en/contact.

9 Installation, Important Instructions

9.1 Flatness for Mounting on Ground Plate

9.2 Flatness for Mounting on Slider

9.3 Flatness Practical Test

9.4 Power Supply

LINAX ${ }^{\text {® }}$ TYP	I commutation [A]	$\mathrm{Imax}^{\text {[}}$]
LINAX ${ }^{\text {® }}$ LxC $\mathbf{F 0 8}$	6.1	7.0
LINAX ${ }^{\text {® }}$ Lxc F10	5.5	9.2
LINAX ${ }^{\text {® }}$ Lxc/e F40	6.0	10.9
LINAX ${ }^{\text {® }}$ Lxs/u $\mathbf{F 6 0}$	8.0	15.7
LINAX ${ }^{\text {® }}$ Lxs $\mathbf{F 1 2 0}$	8.0	18.0

9.5 Earthing concept

Important

- The $\mathbf{0}$ volt connection of the logic supply (pin 1) and the 0 volt connection of the power supply (pin 3) have to be connected to the ground/chassis star point of the switch cabinet.
- The base plate of the Lxs/Lxu motors must be connected to the GND/chassis star point of the switch cabinet.
- The XENAX ${ }^{\circledR}$ servo controller must be screwed onto a
conductive background, which is connected to the GND/chassis star point of the switch cabinet. The motor cable must be connected to the shield clamp.

Note

If the $L x s / L x u$ is mounted on a non-conductive base plate (e.g. granite), the protective earth must be connected directly to the motor.

10 Maintenance, Lifespan

10.1 Lubrication of LINAX ${ }^{\circledR}$ Lxc Types

155.00.10 Dosage pistole for lubrication 155.00.11 Cartridge with standard lubricant

10.2 Lifespan Expectations LINAX ${ }^{\circledR}$ Lxc Types

10.3 Lubrication of LINAX ${ }^{\circledR}$ Lxu, Lxs, Lxe Types

For the Lxu, Lxs and Lxe types we use ball bearing guides with integrated permanent lubrication. For the older LINAX ${ }^{\circledR}$ models re-lubrication was completed with a lubricant filled syringe in order to refill the internal lubrication reservoir. Depending on dynamics the re-lubrication was suggested every 12 months.

The most recent used guiding carriages are maintenance free and no re-lubrication is necessary. The reservoir at the inside of the carriages lubricates all the balls automatically. Even for short-stroke applications lubrication is ensured.

Long term lubrication system integrated!

10.4 Lifespan Expectations Lxu, Lxs, Lxe Types

10.5 Lifespan Extending Measures

- Program trajectories with curve profile instead of trapezoidal profiles (XENAX ${ }^{\circledR}$ servo controller, default Scurve profile $=20 \%$).
- Dynamics should only be as high as necessary.
- Movements which are not cycle time relevant can be executed slower.
- Prevent that dirt particles get into guiding rails and guiding carriages.
- Clean and lubricate guiding beams every 12 months.
10.6 Cleaning Glass Scale

After mechanical mounting or if there is visible dirt, the class scale should be cleaned thoroughly. Please do not touch glass scale afterwards.

If there is error „54, LINAX ${ }^{\circledR}$ measuring head signal too weak" the glass scale is contaminated and signal errors might occur. Use cotton swab or lint-free cloth with thin fluid and de-greasing detergent.
E.g. cleaning alcohol from drugstore or pharmacy.

11 Safety, Environment

11.1 Safety with XENAX ${ }^{\circledR}$ Servocontroller

EN 61000-6-2:2005
Electromagnetic compatibility (EMC), Immunity for industrial environments

EN 61326-3-1
IFA:2012
EN 61326-1, EN 61800-3, EN 50370-1

EN 61000-6-3:2001
Electromagnetic compatibility (EMC), Emission standard for residential, commercial and light-industrial environments

EN 61326-1, EN61800-3, EN50370-1
IFA:2012

Storage and transport

Operating temperature
Operating humidity
Cooling

Protection

EMC Immunity Testing, Industrial Class A

Immunity for Functional Safety Functional safety of power drive systems Electrostatic discharges ESD, Electromagnetic Fields, Fast electric transients Bursts, radio frequency common mode

EMC Emissions Testing, Residential Class B

Radiated EM Field, Interference voltage Functional safety of power drive systems

11.2 Environment Conditions

No storage outside. Storage rooms have to be wellventilated and dry. Storage temperature from $-25^{\circ} \mathrm{C}$ bis $+55^{\circ} \mathrm{C}$
$5^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ environment, after $40^{\circ} \mathrm{C}$ performance reduction 10-90\% non-condensing
No external cooling needed.
Dynamics can possibly be increased by mounting the slider case on a thermoconductive ground plate. IP 40

